Call our counselors @ 080001-66956 and get your doubts solved
Full NATA /JEE B.Arch. 2014 Syllabus covered in 10 days Online Live Classes for NATA 2014/ JEE B....
NATA 2014 / JEE B.Arch. 2014 Architecture Paper solving Online classes( Total 05 Classes for 05...
BHOPAL ZONE- CEED 2015 Coaching Classes and Study Material- 80 Hours Programs:  ...
 01 Onlinemocktest for GATE 2014-AR   Description: The test is timed 1) Based on...
DOWNLOAD NID 2015 MOCK PAPERS (GDPD)   AIM:To self evaluate   Recomended: For...
JEE (B.Arch) 2014-PAPER SOLVING CLASSES (90min daily)   Including Exam GURUMANTRA + 2...
NIFT 2014 B.Des 10 DAY CLASSES BHOPAL|DELHI|CHENNAI/MUMBAI 1.Batches start 1st/10th/20th of every...
ONLINE LIVE CLASSES - NID 2015 (GDPD) - 10 DAYS Course Through Audio-Vedio webbased Technology...
DOWNLOAD-NIFT2014 MFMgt(pg) TEST SERIES, Ideally suitable with Maximum 30 days preparation Time...
NIFT2014 MFMgt(pg) TEST SERIES, Ideally suitable with Maximum 30 days preparation Time with...
10/15/30 Days NATA/JEE B.Arch. 2014/AIEEE B.Arch. 2014 Classes in Ahmedabad, Vadodara Gujrat: *09...
Full course covered in 10 days. Study material + 2 mock tests + Test Bank Included Full NATA 2014...
Includes 03 Online Mocktest + 03 NATA Drawing and sketching Paper.Mocktest Consist Architecture...
AHMEDABAD ZONE - NATA/ JEE B.Arch./ CEPT / NID / NIFT 2014-2015 Coaching classes in Ahmedabad...
New Batches are starting from: "1/3/5/7/9/11/13/15/17/19/21/23/25/27/29 th of every Month....
10 day CEED 2015 Live Classes + Study Material (4 Downloadable Booklets of Beginer pack of Rs3500...
CEPT 2014/2015 Exam Coaching in Ahmedabad for (Faculty of Planning(FP)/Faculty of Design(FD)/...
CEED 2015 Preparation- 04 Booklets + 02 CEED 2015 Mocktests + 03 Online Doubt session For CEED...


Price: 6,000.00

Visa, Maestro, Master Card, American Express
Visa, Maestro, Master Card, American Express
Need Help ?
Feel Free to contact at our Round The clock Helpline number +91-09302127874, or +91-09755940022



12 Booklets Modules of Study Material – E- Books + GATE GuruMantra Module + 10 Online Mocktests +20 Sectional Tests+  Question Bank +  Test series + 10  Full Length Practice Test

Correspondence Tutorials in Printed Format covering GATE 2015 -EC-Electronics and Communication Engg. syllabus in the form of booklets with theory, Tabulated datas,  Tips and Techniques,  solved examples, model tests, formulae and questions in various levels of difficulty in all the topics of the syllabus. The material is designed in such that way that it will Help to Get accurate and efficient preparation for GATE 2015 Exam.

GATE 2015 ECE Course Tutorial Highlight & Features:

        1.  12 Booklets Modules of Study Material – E- Books ( Step BY Step Tutorials )

        2. GATE GuruMantra Module - Booklet

        3. 10 Online Mocktests with User ID and passwords

        4.  20 Sectional Tests – Book

        5. 10  Full Length Practice Test – WorkBooklets

        6. 05 Year GATE Papers

        7. GATE 2015 Question Bank with answers

        8. Test series Module - E- Format

        9. All India Test Series, Comparative Test analysis

Course Features :

12 Booklets of Study Material – Books: Study Material covers Entire Syllabus of the GATE. It Consists Theories, tabulated datas, tips and techniues, images, problems,  Question Bank , Previous year GATE questions and Answers . 20 sectionals Tests are available in the Tutorial material with Answers.

GATE GuruMantra Module- Book : It is very difficult to revise the whole Engineering syllabus is a short span of time, especially during last day of preparation. This book is collection of important points and formulas related to GATE Syllabus.

10 Online Mocktests – Online :  Candidates will provides User ID and password for Attempting and Accesing the Test from Their Home. after completion of test candidate can view the results and answers. its good for Online practise sessions.

20 Sectional Tests – Book : This book has 20 Sectional tests which covers various topics.

10  Full Length Practice Test – Workbooklets : consist workbooklets of set of 10 Full length papers based on GATE Syllabus and patterns. Students can take this test during any time of their preparation.

** students will recieve download link and activation key as per dispatch schedule

GATE 2015 ECE Syllabus Covered for Electronics and Communication Engineering (EC):

Engineering Mathematics

Linear Algebra:

Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.


Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems.

Differential equations:

First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial and boundary value problems, Partial Differential Equations and variable separable method.

Complex variables:

Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals.

Probability and Statistics:

Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis.

Numerical Methods:

Solutions of non-linear algebraic equations, single and multi-step methods for differential equations.

Transform Theory:

Fourier transform, Laplace transform, Z-transform.

Electronics and Communication Engineering


Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.

Electronic Devices:

Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.

Analog Circuits:

Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential and operational, feedback, and power. Frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, 555 Timers. Power supplies.

Digital circuits:

Boolean algebra, minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing.

Signals and Systems:

Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT, z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems.

Control Systems:

Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. State variable representation and solution of state equation of LTI control systems.


Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of information theory and channel capacity theorem. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.


Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.


The candidates have to be furnishing their GATE Application From copy and admit card copy(Currently if not available they can furnish any photo ID proof at

(download GATE 2015 ECE Study material, study material GATE ECE Download, GATE 2015 EC Study material download, GATE ECE Study material pdf download, GATE 2015 ECE Syllabus, GATE 2015 Syllabus, study material for GATE ECE, Study material for GATE 2015 ECE - ELECTRONICS & COMMUNICATION ENGG. )

Visa, Maestro, Master Card, American Express

Student Results

Varun Garg
AIR - 331
GATE preparation tutorials,GATE study material
Arpita Kumari
GATE 2014 AND GATE 2015 sample papers
Shaona Dutta
AIR - 93
GATE Tutorials,GATE study material,GATE Preparation,GATE Exam Postal kit
Parikshit S Thakur
AIR - 146
Tania Banerjee
AIR - 145
GATE 2013 Tutorials,GATE 2013 study material,GATE 2013 Preparation,GATE 2013 Exa
Bhupandra Salodia
AIR - 560
GATE 2014 AND GATE 2015 and GATE 2016 sample papers
Sangeeth K
AIR - 102
GATE Tutorials,GATE Study material,GATE mock tests,GATE preparation,GATE postal
GATE 2014 online study material
Shefali Gupta
AIR - 169
Ravnish Kaur
AIR - 221
GATE preparation tutorials,GATE study material
Deepika Gupta
GATE 2014 AND GATE 2015 and GATE 2016 mocktests
AIR - 207